Bioorthogonally Cross-Linked Hydrogel Network with Precisely Controlled Disintegration Time over a Broad Range

نویسندگان

  • Jianwen Xu
  • Ellva Feng
  • Jie Song
چکیده

Hydrogels with predictable degradation are highly desired for biomedical applications where timely disintegration of the hydrogel (e.g., drug delivery, guided tissue regeneration) is required. However, precisely controlling hydrogel degradation over a broad range in a predictable manner is challenging due to limited intrinsic variability in the degradation rate of liable bonds and difficulties in modeling degradation kinetics for complex polymer networks. More often than not, empirical tuning of the degradation profile results in undesired changes in other properties. Here we report a simple but versatile hydrogel platform that allows us to formulate hydrogels with predictable disintegration time from 2 to >250 days yet comparable macroscopic physical properties. This platform is based on a well-defined network formed by two pairs of four-armed polyethylene glycol macromers terminated with azide and dibenzocyclooctyl groups, respectively, via labile or stable linkages. The high-fidelity bioorthogonal reaction between the symmetric hydrophilic macromers enables robust cross-linking in water, phosphate-buffered saline, and cell culture medium to afford tough hydrogels capable of withstanding >90% compressive strain. Strategic placement of labile ester linkages near the cross-linking site within this superhydrophilic network, accomplished by adjustments of the ratio of the macromers used, enables broad tuning of the disintegration rates precisely matching with the theoretical predictions based on first-order linkage cleavage kinetics. This platform can be exploited for applications where a precise degradation rate is targeted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.

We present a microfluidic method to direct the self-assembly of temperature-sensitive liposome-hydrogel hybrid nanoparticles. Our approach yields nanoparticles with structural properties and highly monodisperse size distributions precisely controlled across a broad range relevant to the targeted delivery and controlled release of encapsulated therapeutic agents. We used microfluidic hydrodynami...

متن کامل

Nanoscale characterization of the equilibrium and kinetic response of hydrogel structures.

The use of hydrogel nanostructured patterns and films in biomedical micro- and nanodevices requires the ability to analyze and understand their response properties at the nanoscale. Herein, the thermoresponse behavior of atom transfer radical polymerization (ATRP) grown poly(ethylene glycol) n dimethacrylate (PEGnDMA) cross-linked poly(N-isopropyl acrylamide) (PNIPAAm) hydrogel thin films over ...

متن کامل

Submicrometric Films of Surface-Attached Polymer Network with Temperature-Responsive Properties.

Temperature-responsive properties of surface-attached poly(N-isopropylacrylamide) (PNIPAM) network films with well-controlled chemistry are investigated. The synthesis consists of cross-linking and grafting preformed ene-reactive polymer chains through thiol-ene click chemistry. The formation of surface-attached and cross-linked polymer films has the advantage of being well-controlled without a...

متن کامل

Swelling behaviour and controlled drug release from cross-linked κ-carrageenan/NaCMC hydrogel by diffusion mechanism.

We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ra...

متن کامل

Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker.

Many diverse applications utilize hydrogels as carriers, sensors, and actuators, and these applications rely on the refined control of physical properties of the hydrogel, such as elastic modulus and degree of swelling. Often, hydrogel properties are interdependent; for example, when elastic modulus is increased, degree of swelling is decreased. Controlling these inverse dependencies remains a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014